Fiber Optics and Optical Communications|403 Article(s)
Coexistence of noise-like pulse and dark pulse in an Er/Yb co-doped fiber laser
Jing Li, Chuncan Wang, and Peng Wang
The coexistence of a noise-like pulse (NLP) and a dark pulse was experimentally demonstrated in a net-anomalous dispersion Er/Yb co-doped fiber (EYDF) laser, for the first time, to our knowledge. The cavity was mode-locked by nonlinear polarization rotation (NPR) technique. Meanwhile, a Sagnac loop with a section of polarization-maintaining fiber (PMF) was used as a comb filter to enable multiwavelength pulse operation. When the PMF length was 0.3 m, an asymmetric two-peak spectrum with central wavelengths of 1565.3 and 1594.2 nm was obtained by adjusting polarization controllers (PCs). It is a composite state of NLP and dark pulse due to the cross-phase modulation between the two different wavelength components along orthogonal polarization axes. The two pulses are synchronized with a repetition rate of 7.53 MHz. By adjusting the PC in the Sagnac loop, the spectral ranges of NLPs and dark pulses can be tuned from 1560 to 1577.8 nm and from 1581.8 to 1605.4 nm, respectively. In addition, the pulse characteristics were investigated by incorporating the PMF with different lengths, where the coexistence patterns can be generated when the PMF lengths were 0.2 and 0.3 m. A longer PMF can lead to a narrowband comb filtering, which causes a larger loss and is not favorable for stable operation of the coexistence regime. This fiber laser demonstrates an interesting operation regime and has significant potential for numerous practical applications.
Chinese Optics Letters
  • Publication Date: May. 15, 2024
  • Vol. 22, Issue 5, 051403 (2024)
MLSE-assisted decision feedback equalizer for error-propagation suppression in high-speed IM-DD transmission systems
Jiahao Zhou, Jing Zhang, Xue Zhao, Rui Wang, Jinjiang Li, Shaohua Hu, Qianwu Zhang, Qi Yang, Bo Xu, and Kun Qiu
Chinese Optics Letters
  • Publication Date: May. 17, 2024
  • Vol. 22, Issue 5, 050604 (2024)
Preparation of panda-shaped photonic crystal fibers with and without silver wire
Junbo Lou, Yonghui Yang, Qiang Qu, and Shuguang Li
Chinese Optics Letters
  • Publication Date: May. 08, 2024
  • Vol. 22, Issue 5, 050603 (2024)
Joint modulation format identification and OSNR monitoring based on Stokes vector distribution features for digital coherent optical receivers
Zhengyu Pu, Lin Jiang, Lianshan Yan, Anlin Yi, Haijun He, Wei Pan, and Bin Luo
Chinese Optics Letters
  • Publication Date: May. 14, 2024
  • Vol. 22, Issue 5, 050602 (2024)
Robust thin-film lithium niobate modulator on a silicon substrate with backside holes
Mai Wang, Lu Qi, Haohua Wang, Ziliang Ruan, Gengxin Chen, Bin Chen, Shengqi Gong, Kaixuan Chen, and Liu Liu
Recently, Mach–Zehnder modulators based on thin-film lithium niobate have attracted broad interest for their potential for high modulation bandwidth, low insertion loss, high extinction ratio, and high modulation efficiency. The periodic capacitively loaded traveling-wave electrode is optimally adopted for ultimate high-performances in this type of modulator. However, such an electrode structure on a silicon substrate still suffers from the velocity mismatch and substrate leakage loss for microwave signals. Here, we introduce a thin-film lithium niobate modulator structure using this periodic capacitively loaded electrode on a silicon substrate. Backside holes in the silicon substrate are prepared to solve robustly the above difficulties. The fabricated device exhibits an insertion loss of 0.9 dB, a halfwave-voltage–length product of 2.18 V·cm, and an ultra-wide bandwidth well exceeding 67 GHz for a 10-mm-long device. Data transmissions with rates up to 112 Gb/s are demonstrated. The proposed structure and fabrication strategy are compatible for other types of monolithic and heterogeneous integrated thin-film lithium niobate modulators on a silicon substrate.
Chinese Optics Letters
  • Publication Date: May. 14, 2024
  • Vol. 22, Issue 5, 050601 (2024)
Low-cost, large-coverage, and high-flexibility coherent PON for next-generation access networks: advances, challenges, and prospects [Invited]|On the Cover
Sizhe Xing, Junwen Zhang, Wangwei Shen, An Yan, Guoqiang Li, Aolong Sun, Ji Zhou, Dong Guo, Jianyang Shi, Ziwei Li, Chao Shen, and Nan Chi
Increasing bandwidth requirements have posed significant challenges for traditional access networks. It is difficult for intensity modulation/direct detection to meet the power budget and flexibility requirements of the next-generation passive optical network (PON) at 100G and beyond considering the new requirements. This is driving researchers to develop novel optical access technologies. Low-cost, wide-coverage, and high-flexibility coherent PON is emerging as a strong contender in the competition. In this article, we will review technologies that reduce the complexity of coherent PON (CPON), enabling it to meet the commercial requirements. Also, advanced algorithms and architectures that can enhance system coverage and flexibility are also discussed.
Chinese Optics Letters
  • Publication Date: Apr. 18, 2024
  • Vol. 22, Issue 4, 040604 (2024)
Picosecond gain-switched polymer fiber random lasers
Wenyu Du, Sen Gao, Xiaojuan Zhang, Siqi Li, Yan Kuai, Zhiqiang Wang, Zhigang Cao, Feng Xu, Yu Liu, Lin Xu, Junxi Zhang, Kang Xie, Benli Yu, and Zhijia Hu
Random lasers are a type of lasers that lack typical resonator structures, offering benefits such as easy integration, low cost, and low spatial coherence. These features make them popular for speckle-free imaging and random number generation. However, due to their high threshold and phase instability, the production of picosecond random lasers has still been a challenge. In this work, we have developed three dyes incorporating polymer optical fibers doped with various scattering nanoparticles to produce short-pulsed random fiber lasers. Notably, stable picosecond random laser emission lasting 600 ps is observed at a low pump energy of 50 µJ, indicating the gain-switching mechanism. Population inversion and gain undergo an abrupt surge as the intensity of the continuously pumped light nears the threshold level. When the intensity of the continuously pumped light reaches a specific value, the number of inversion populations in the “scattering cavity” surpasses the threshold rapidly. Simulation results based on a model that considers power-dependent gain saturation confirmed the above phenomenon. This research helps expand the understanding of the dynamics behind random medium-stimulated emission in random lasers and opens up possibilities for mode locking in these systems.
Chinese Optics Letters
  • Publication Date: Apr. 17, 2024
  • Vol. 22, Issue 4, 040603 (2024)
LP modes exchange based on multiplane light conversion
Yanan Zhong, Chuxuan Lin, Juncheng Fang, Ting Lei, and Xiaocong Yuan
Data exchange between different mode channels is essential in the optical communication network with mode-division multiplexing (MDM). However, there are challenges in realizing mode exchange with low insert loss, low mode crosstalk, and high integration. Here, we designed and fabricated a mode exchange device based on multiplane light conversion (MPLC), which supports the transmission of LP01, LP11a, LP11b, and LP21 modes in the C-band and L-band. The simulated exchanged mode purities are greater than 85%. The phase masks were fabricated on a silicon substrate to facilitate the integration with optical systems, with an insert loss of less than 2.2 dB and mode crosstalk below -21 dB due primarily to machining inaccuracies and alignment errors. We carried out an optical communication experiment with 10 Gbit/s OOK and QPSK data transmission at the wavelength of 1550 nm and obtained excellent performance with the device. It paves the way for flexible data exchange as a building block in MDM optical communication networks.
Chinese Optics Letters
  • Publication Date: Mar. 22, 2024
  • Vol. 22, Issue 3, 030602 (2024)
Topics